JUC中的原子类
原子整数
J.U.C 并发包提供了:
- AtomicBoolean
- AtomicInteger
- AtomicLong
以 AtomicInteger 为例
AtomicInteger i = new AtomicInteger(0);
System.out.println(i.getAndIncrement());
System.out.println(i.incrementAndGet());
System.out.println(i.decrementAndGet());
System.out.println(i.getAndDecrement());
System.out.println(i.getAndAdd(5));
System.out.println(i.addAndGet(-5));
System.out.println(i.getAndUpdate(p -> p - 2));
System.out.println(i.updateAndGet(p -> p + 2));
|
其中updateAndGet方法可以重写为
public static int updateAndGet(AtomicInteger i,IntUnary0perator operator) { while (true) { int prev = i.get(); int next = operator.applyAsInt(prev); if (i.compareAndSet(prev,next)) { return next; } } }
|
原子引用
为什么需要原子引用类型?
因为程序中要保护的共享数据并不一定都是基本数据类型,也有对象类型,此时就需要通过原子引用类型进行保护;
- AtomicReference
- AtomicMarkableReference
- AtomicStampedReference
有如下方法
public interface DecimalAccount { BigDecimal getBalance(); void withdraw(BigDecimal amount);
static void demo(DecimalAccount account) { List<Thread> ts = new ArrayList<>(); for (int i = 0; i < 1000; i++) { ts.add(new Thread(() -> { account.withdraw(BigDecimal.TEN); })); } ts.forEach(Thread::start); ts.forEach(t -> { try { t.join(); } catch (InterruptedException e) { e.printStackTrace(); } }); System.out.println(account.getBalance()); } }
|
试着提供不同的 DecimalAccount 实现,实现安全的取款操作
不安全实现
class DecimalAccountUnsafe implements DecimalAccount { BigDecimal balance; public DecimalAccountUnsafe(BigDecimal balance) { this.balance = balance; } @Override public BigDecimal getBalance() { return balance; } @Override public void withdraw(BigDecimal amount) { BigDecimal balance = this.getBalance(); this.balance = balance.subtract(amount); } }
|
安全实现-使用锁
class DecimalAccountSafeLock implements DecimalAccount { private final Object lock = new Object(); BigDecimal balance; public DecimalAccountSafeLock(BigDecimal balance) { this.balance = balance; } @Override public BigDecimal getBalance() { return balance; } @Override public void withdraw(BigDecimal amount) { synchronized (lock) { BigDecimal balance = this.getBalance(); this.balance = balance.subtract(amount); } } }
|
安全实现-使用 CAS
class DecimalAccountSafeCas implements DecimalAccount { AtomicReference<BigDecimal> ref; public DecimalAccountSafeCas(BigDecimal balance) { ref = new AtomicReference<>(balance); } @Override public BigDecimal getBalance() { return ref.get(); } @Override public void withdraw(BigDecimal amount) { while (true) { BigDecimal prev = ref.get(); BigDecimal next = prev.subtract(amount); if (ref.compareAndSet(prev, next)) { break; } } } }
|
测试代码
DecimalAccount.demo(new DecimalAccountUnsafe(new BigDecimal("10000"))); DecimalAccount.demo(new DecimalAccountSafeLock(new BigDecimal("10000"))); DecimalAccount.demo(new DecimalAccountSafeCas(new BigDecimal("10000")));
|
运行结果
4310 cost: 425 ms 0 cost: 285 ms 0 cost: 274 ms
|
ABA 问题及解决
ABA问题就是:如果你在主线程想把A改成B,假如其他线程把A改成B再改回成A,主线程不知道,仍然会成功修改,没办法感知已经改动过了。虽然这对大部分场景都没有影响,但是小部分场景仍然会在意是否存在这个问题,所以我们需要解决这个问题
static AtomicReference<String> ref = new AtomicReference<>("A"); public static void main(String[] args) throws InterruptedException { log.debug("main start..."); String prev = ref.get(); other(); sleep(1); log.debug("change A->C {}", ref.compareAndSet(prev, "C")); } private static void other() { new Thread(() -> { log.debug("change A->B {}", ref.compareAndSet(ref.get(), "B")); }, "t1").start(); sleep(0.5); new Thread(() -> { log.debug("change B->A {}", ref.compareAndSet(ref.get(), "A")); }, "t2").start(); }
|
输出
11:29:52.325 c.Test36 [main] - main start... 11:29:52.379 c.Test36 [t1] - change A->B true 11:29:52.879 c.Test36 [t2] - change B->A true 11:29:53.880 c.Test36 [main] - change A->C true
|
主线程仅能判断出共享变量的值与最初值 A 是否相同,不能感知到这种从 A 改为 B 又 改回 A 的情况,如果主线程希望:
只要有其它线程【动过了】共享变量,那么自己的 cas 就算失败,这时,仅比较值是不够的,需要再加一个版本号 ,也就是用下面的类可以实现
AtomicStampedReference
其实就是不但要比较值,还要比较版本号,思想就是这样。
static AtomicStampedReference<String> ref = new AtomicStampedReference<>("A", 0); public static void main(String[] args) throws InterruptedException { log.debug("main start..."); String prev = ref.getReference(); int stamp = ref.getStamp(); log.debug("版本 {}", stamp); other(); sleep(1); log.debug("change A->C {}", ref.compareAndSet(prev, "C", stamp, stamp + 1)); } private static void other() { new Thread(() -> { log.debug("change A->B {}", ref.compareAndSet(ref.getReference(), "B", ref.getStamp(), ref.getStamp() + 1)); log.debug("更新版本为 {}", ref.getStamp()); }, "t1").start(); sleep(0.5); new Thread(() -> { log.debug("change B->A {}", ref.compareAndSet(ref.getReference(), "A", ref.getStamp(), ref.getStamp() + 1)); log.debug("更新版本为 {}", ref.getStamp()); }, "t2").start(); }
|
输出为
15:41:34.891 c.Test36 [main] - main start... 15:41:34.894 c.Test36 [main] - 版本 0 15:41:34.956 c.Test36 [t1] - change A->B true 15:41:34.956 c.Test36 [t1] - 更新版本为 1 15:41:35.457 c.Test36 [t2] - change B->A true 15:41:35.457 c.Test36 [t2] - 更新版本为 2 15:41:36.457 c.Test36 [main] - change A->C false
|
AtomicStampedReference 可以给原子引用加上版本号,追踪原子引用整个的变化过程,如: A -> B -> A ->C ,通过AtomicStampedReference,我们可以知道,引用变量中途被更改了几次。
但是有时候,并不关心引用变量更改了几次,只是单纯的关心是否更改过,所以就有AtomicMarkableReference
AtomicMarkableReference
class GarbageBag { String desc; public GarbageBag(String desc) { this.desc = desc; } public void setDesc(String desc) { this.desc = desc; } @Override public String toString() { return super.toString() + " " + desc; } } @Slf4j public class TestABAAtomicMarkableReference { public static void main(String[] args) throws InterruptedException { GarbageBag bag = new GarbageBag("装满了垃圾"); AtomicMarkableReference<GarbageBag> ref = new AtomicMarkableReference<>(bag, true); log.debug("主线程 start..."); GarbageBag prev = ref.getReference(); log.debug(prev.toString()); new Thread(() -> { log.debug("打扫卫生的线程 start..."); bag.setDesc("空垃圾袋"); while (!ref.compareAndSet(bag, bag, true, false)) {} log.debug(bag.toString()); }).start(); Thread.sleep(1000); log.debug("主线程想换一只新垃圾袋?"); boolean success = ref.compareAndSet(prev, new GarbageBag("空垃圾袋"), true, false); log.debug("换了么?" + success); log.debug(ref.getReference().toString()); } }
|
输出
2019-10-13 15:30:09.264 [main] 主线程 start... 2019-10-13 15:30:09.270 [main] cn.itcast.GarbageBag@5f0fd5a0 装满了垃圾 2019-10-13 15:30:09.293 [Thread-1] 打扫卫生的线程 start... 2019-10-13 15:30:09.294 [Thread-1] cn.itcast.GarbageBag@5f0fd5a0 空垃圾袋 2019-10-13 15:30:10.294 [main] 主线程想换一只新垃圾袋? 2019-10-13 15:30:10.294 [main] 换了么?false 2019-10-13 15:30:10.294 [main] cn.itcast.GarbageBag@5f0fd5a0 空垃圾袋
|
可以注释掉打扫卫生线程代码,再观察输出
原子数组
- AtomicIntegerArray
- AtomicLongArray
- AtomicReferenceArray
有如下方法
private static <T> void demo(Supplier<T> arraySupplier,Function<T, Integer> lengthFun,BiConsumer<T, Integer> putConsumer,Consumer<T> printConsumer ) { List<Thread> ts = new ArrayList<>(); T array = arraySupplier.get(); int length = lengthFun.apply(array); for (int i = 0; i < length; i++) { ts.add(new Thread(() -> { for (int j = 0; j < 10000; j++) { putConsumer.accept(array, j%length); } })); } ts.forEach(t -> t.start()); ts.forEach(t -> { try { t.join(); } catch (InterruptedException e) { e.printStackTrace(); } }); printConsumer.accept(array); }
|
不安全的数组
demo( ()->new int[10], (array)->array.length, (array, index) -> array[index]++, array-> System.out.println(Arrays.toString(array)) );
|
结果
[9870, 9862, 9774, 9697, 9683, 9678, 9679, 9668, 9680, 9698]
|
安全的数组
demo( ()-> new AtomicIntegerArray(10), (array) -> array.length(), (array, index) -> array.getAndIncrement(index), array -> System.out.println(array) );
|
结果
[10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000]
|
字段更新器
- AtomicReferenceFieldUpdater // 域 字段
- AtomicIntegerFieldUpdater
- AtomicLongFieldUpdater
利用字段更新器,可以针对对象的某个域(Field)进行原子操作,只能配合 volatile 修饰的字段使用,否则会出现异常
public class Test5 { private volatile int field; public static void main(String[] args) { AtomicIntegerFieldUpdater fieldUpdater =AtomicIntegerFieldUpdater.newUpdater(Test5.class, "field"); Test5 test5 = new Test5(); fieldUpdater.compareAndSet(test5, 0, 10); System.out.println(test5.field); fieldUpdater.compareAndSet(test5, 10, 20); System.out.println(test5.field); fieldUpdater.compareAndSet(test5, 10, 30); System.out.println(test5.field); } }
|
输出
原子累加器
累加器性能比较(这个比AtomicInteger等性能要高很多,毕竟是大师之作)
private static <T> void demo(Supplier<T> adderSupplier, Consumer<T> action) { T adder = adderSupplier.get(); long start = System.nanoTime(); List<Thread> ts = new ArrayList<>(); for (int i = 0; i < 40; i++) { ts.add(new Thread(() -> { for (int j = 0; j < 500000; j++) { action.accept(adder); } })); } ts.forEach(t -> t.start()); ts.forEach(t -> { try { t.join(); } catch (InterruptedException e) { e.printStackTrace(); } }); long end = System.nanoTime(); System.out.println(adder + " cost:" + (end - start)/1000_000); }
|
比较 AtomicLong 与 LongAdder
for (int i = 0; i < 5; i++) { demo(() -> new LongAdder(), adder -> adder.increment()); } for (int i = 0; i < 5; i++) { demo(() -> new AtomicLong(), adder -> adder.getAndIncrement()); }
|
输出
1000000 cost:43 1000000 cost:9 1000000 cost:7 1000000 cost:7 1000000 cost:7 1000000 cost:31 1000000 cost:27 1000000 cost:28 1000000 cost:24 1000000 cost:22
|
性能提升的原因很简单,就是在有竞争时,设置多个累加单元,Therad-0 累加 Cell[0],而 Thread-1 累加 Cell[1]… 最后将结果汇总。这样它们在累加时操作的不同的 Cell 变量,因此减少了 CAS 重试失败,从而提高性能。